skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wilson-Kennedy, Zakiya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pandey, Sumali (Ed.)
    This original research article focuses on the investigation of the use of generative artificial intelligence (GAI) use among students in communication-intensive STEM courses and how this engagement shapes their scientific communication practices, competencies, confidence, and science identity. Using a mixed-methods approach, patterns were identified in how students perceived their current science identity and use of incorporating artificial intelligence (AI) into writing, oral, and technical tasks. Thematic analysis reveals that students use AI for a range of STEM communication endeavors such as structuring lab reports, brainstorming presentation ideas, and verifying code. While many minoritized students explicitly describe AI as a confidence-boosting, timesaving, and competence-enhancing tool, others—particularly those from privileged backgrounds—downplay its influence, despite evidence of its significant role in their science identity. These results suggest the reframing of science identity as being shaped by technological usage and social contingency. This research illuminates both the potential and pitfalls of AI-use in shaping the next generation of scientists. 
    more » « less
    Free, publicly-accessible full text available August 26, 2026
  2. Pranjol, Zahid (Ed.)
    This perspective article focuses on the exploration and advocacy of approaches to be considered in designing equitable learning experiences for students’ use of artificial intelligence, machine learning, and technology through the Universal Design for Learning Framework (UDL) exemplifying chemistry examples that can be applied to any course in STEM. The use of artificial intelligence (AI) and machine learning are causing disruptions within learning in higher education and is also casting a spotlight on systemic inequities particularly affecting minoritized groups broadly and in STEM fields. Particularly, the emergence of AI has focused on inequities toward minoritized students in academic and professional ethics. As the U.S. education system grapples with a nuanced mix of acceptance and hesitation towards AI, the necessity for inclusive and equitable education, impactful learning practices, and innovative strategies has become more pronounced. Promoting equitable approaches for the use of artificial intelligence and technology in STEM learning will be an important milestone in addressing STEM disparities toward minoritized groups and equitable accessibility to evolving technology. 
    more » « less
  3. Holistic mentoring ecosystems are a comprehensive approach to addressing the diverse needs of students through interconnected support networks. While mentoring has been well-documented in existing literature, more research is needed to determine the effectiveness of mentoring ecosystems in mitigating the impact of critical junctures for vulnerable, high-attrition student populations. Guided by Tinto’s model of retention, this qualitative case study investigated the role of holistic mentoring ecosystems in mitigating the impacts of the two combined critical junctures—the COVID-19 pandemic and the first year of college—on low-income STEM undergraduates. Our findings suggest that holistic mentoring ecosystems were essential in helping students adjust to the academic environment and fostering a sense of belonging in the STEM community amid the severe limitations imposed by the pandemic. This study adds to the growing body of literature investigating the approaches and strategies effective in supporting vulnerable student populations through critical junctures in their educational journey. 
    more » « less
  4. Grounded in a conceptual framework incorporating intersectionality, motivation, self-determination, and self-efficacy, this empirical study investigated how individuals’ identities, mindsets, and resources in educational environments intentionally cultivated to support their decision-making, development, and connections in the science community, can significantly increase the recruitment, persistence, and success of low-income, academically talented science students from diverse backgrounds. Several factors—academic performance in coursework, self-image, self-agency, financial support, and social integration in the science culture—continue to significantly impact student retention and persistence in STEM disciplines. Many of these factors are negatively affected based on a students’ intersecting identities, which can be detrimental to their academic success if not addressed. We found that additional considerations to factor in concerning low-income students from diverse backgrounds that is pertinent to supporting their persistence and success in the postsecondary STEM educational context. 
    more » « less
  5. null (Ed.)
    Undergraduate research and international experiences are often described as high-impact educational practices beneficial for undergraduate student success and for supporting the development of science identity and intercultural competencies. While several studies have investigated the impact of undergraduate research on students from minoritized groups, fewer studies have focused on their engagement in global experiences, and fewer still have explored their engagement in international research experiences. Drawing on the theoretical frameworks of Science Identity, Social Cognitive Career Theory, and the Intercultural Competence Model, this present study explores the benefits of participating in an international research experience for minority undergraduate scientists. Using a qualitative case study methodology, we examined the evolution of students’ science identity, research competencies, and intercultural competence after engaging in a three-month international research opportunity in France and Belgium. We found that after participating in international research, minority undergraduate scientists had: 1) Increased confidence in their science identity and abilities; 2) Gained and strengthened skills necessary to be a successful researcher, 3) Recognized the influence of international exposure on their growth personally and professionally, 4) Expressed how monumental this research opportunity is for all minority students to experience. Our findings suggest substantial benefits from an international research experience on the development of minority undergraduate scientists. 
    more » « less
  6. null (Ed.)
    Undergraduate research and international experiences are often described as high-impact educational practices beneficial for undergraduate student success and for supporting the development of science identity and intercultural competencies. While several studies have investigated the impact of undergraduate research on students from minoritized groups, fewer studies have focused on their engagement in global experiences, and fewer still have explored their engagement in international research experiences. Drawing on the theoretical frameworks of Science Identity, Social Cognitive Career Theory, and the Intercultural Competence Model, this present study explores the benefits of participating in an international research experience for minority undergraduate scientists. Using a qualitative case study methodology, we examined the evolution of students’ science identity, research competencies, and intercultural competence after engaging in a three-month international research opportunity in France and Belgium. We found that after participating in international research, minority undergraduate scientists had: 1) Increased confidence in their science identity and abilities; 2) Gained and strengthened skills necessary to be a successful researcher, 3) Recognized the influence of international exposure on their growth personally and professionally, 4) Expressed how monumental this research opportunity is for all minority students to experience. Our findings suggest substantial benefits from an international research experience on the development of minority undergraduate scientists. 
    more » « less